195 research outputs found

    Antifungal activity and acute toxicity of stem bark extracts of Drypetes Gossweileri S. Moore-Euphorbiaceae from Cameroon

    Get PDF
    Drypetes gossweilleri S. Moore is a plant used in traditional medicine in Cameroon. The antifungal properties of its stem-bark crude extract and fractions DG1, DG2, DG3, DG4, DG5, DG6, DG7, DG8 and DG9 were assayed by agar and broth dilution methods on solid and liquid media against C. Krusei, C. albicans, C. glabrata, T. mentagerophytes, M. langeroinii, M. gypeum, M. audouini, T. rubrum, T. soudanense, T. terrestre, A. flavus and A. niger. The results revealed a substantial antifungal effect with minimal inhibitory concentrations ranging respectively from 24.11μg/ml to 1562μg/ml for yeasts and from 3125μg/ml to 12500μg/ml for filamentous fungi. Among the fractions, fraction DG4 exerted the highest antifungal activity. Moreover, no toxic effect was noticed in male and female albinos Wistar rats treated per os with the crude stem bark’s extract of Drypetes gossweileri at a dose up to 12g/kg of body weight. The phytochemical screening of the crude extract and fractions showed the presence of alkaloids, phenols, flavonoids, saponins, anthocyanines, anthraquinones, sterols, lipids and essential oils. Therefore, Drypetes gossweileri may be safe as phytomedecine for the treatment of fungal infections.Key words: Antifungal activity, Drypetes gossweileri, acute toxicity

    National profile of foot orthotic provision in the United Kingdom, part 2 : podiatrist, orthotist and physiotherapy practices.

    Get PDF
    Background A national survey recently provided the first description of foot orthotic provision in the United Kingdom. This article aims to profile and compare the foot orthoses practice of podiatrists, orthotists and physiotherapists within the current provision. Method Quantitative data were collected from podiatrists, orthotists and physiotherapists via an online questionnaire. The topics, questions and answers were developed through a series of pilot phases. The professions were targeted through electronic and printed materials advertising the survey. Data were captured over a 10 month period in 2016. Differences between professions were investigated using Chi squared and Fischer’s exact tests, and regression analysis was used to predict the likelihood of each aspect of practice in each of the three professions. Results Responses from 357 podiatrists, 93 orthotists and 49 physiotherapists were included in the analysis. The results reveal statistically significant differences in employment and clinical arrangements, the clinical populations treated, and the nature and volume of foot orthoses caseload. Conclusion Podiatrists, orthotists and physiotherapists provide foot orthoses to important clinical populations in both a prevention and treatment capacity. Their working context, scope of practice and mix of clinical caseload differs significantly, although there are areas of overlap. Addressing variations in practice could align this collective workforce to national allied health policy

    Reliability of the TekScan MatScan® system for the measurement of plantar forces and pressures during barefoot level walking in healthy adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plantar pressure systems are increasingly being used to evaluate foot function in both research settings and in clinical practice. The purpose of this study was to investigate the reliability of the TekScan MatScan<sup>® </sup>system in assessing plantar forces and pressures during barefoot level walking.</p> <p>Methods</p> <p>Thirty participants were assessed for the reliability of measurements taken one week apart for the variables maximum force, peak pressure and average pressure. The following seven regions of the foot were investigated; heel, midfoot, 3<sup>rd</sup>-5<sup>th </sup>metatarsophalangeal joint, 2<sup>nd </sup>metatarsophalangeal joint, 1<sup>st </sup>metatarsophalangeal joint, hallux and the lesser toes.</p> <p>Results</p> <p>Reliability was assessed using both the mean and the median values of three repeated trials. The system displayed moderate to good reliability of mean and median calculations for the three analysed variables across all seven regions, as indicated by intra-class correlation coefficients ranging from 0.44 to 0.95 for the mean and 0.54 to 0.97 for the median, and coefficients of variation ranging from 5 to 20% for the mean and 3 to 23% for the median. Selecting the median value of three repeated trials yielded slightly more reliable results than the mean.</p> <p>Conclusions</p> <p>These findings indicate that the TekScan MatScan<sup>® </sup>system demonstrates generally moderate to good reliability.</p

    Quantifying the Detrimental Impacts of Land-Use and Management Change on European Forest Bird Populations

    Get PDF
    The ecological impacts of changing forest management practices in Europe are poorly understood despite European forests being highly managed. Furthermore, the effects of potential drivers of forest biodiversity decline are rarely considered in concert, thus limiting effective conservation or sustainable forest management. We present a trait-based framework that we use to assess the detrimental impact of multiple land-use and management changes in forests on bird populations across Europe. Major changes to forest habitats occurring in recent decades, and their impact on resource availability for birds were identified. Risk associated with these changes for 52 species of forest birds, defined as the proportion of each species' key resources detrimentally affected through changes in abundance and/or availability, was quantified and compared to their pan-European population growth rates between 1980 and 2009. Relationships between risk and population growth were found to be significantly negative, indicating that resource loss in European forests is an important driver of decline for both resident and migrant birds. Our results demonstrate that coarse quantification of resource use and ecological change can be valuable in understanding causes of biodiversity decline, and thus in informing conservation strategy and policy. Such an approach has good potential to be extended for predictive use in assessing the impact of possible future changes to forest management and to develop more precise indicators of forest health

    Foot pressure distribution during walking in young and old adults

    Get PDF
    BACKGROUND: Measurement of foot pressure distribution (FPD) is clinically useful for evaluation of foot and gait pathologies. The effects of healthy aging on FPD during walking are not well known. This study evaluated FPD during normal walking in healthy young and elderly subjects. METHODS: We studied 9 young (30 ± 5.2 years), and 6 elderly subjects (68.7 ± 4.8 years). FPD was measured during normal walking speed using shoe insoles with 99 capacitive sensors. Measured parameters included gait phase characteristics, mean and maximum pressure and force, and relative load. Time-series measurements of each variable for all sensors were grouped into 9 anatomical masks. RESULTS: Elderly subjects had lower normalized maximum pressure for the medial and lateral calcaneal masks, and for all medial masks combined. In the medial calcaneus mask, the elderly group also had a lower absolute maximum and lower mean and normalized mean pressures and forces, compared to young subjects. Elderly subjects had lower maximum force and normalized maximum force and lower mean force and normalized mean forces in the medial masks as well. CONCLUSION: FPD differences between the young and elderly groups were confined to the calcaneus and hallux regions and to the medial side of the foot. In elderly subjects, weight bearing on the lateral side of the foot during heel touch and toe-off phases may affect stability during walking

    What has finite element analysis taught us about diabetic foot disease and its management?:a systematic review

    Get PDF
    Over the past two decades finite element (FE) analysis has become a popular tool for researchers seeking to simulate the biomechanics of the healthy and diabetic foot. The primary aims of these simulations have been to improve our understanding of the foot's complicated mechanical loading in health and disease and to inform interventions designed to prevent plantar ulceration, a major complication of diabetes. This article provides a systematic review and summary of the findings from FE analysis-based computational simulations of the diabetic foot.A systematic literature search was carried out and 31 relevant articles were identified covering three primary themes: methodological aspects relevant to modelling the diabetic foot; investigations of the pathomechanics of the diabetic foot; and simulation-based design of interventions to reduce ulceration risk.Methodological studies illustrated appropriate use of FE analysis for simulation of foot mechanics, incorporating nonlinear tissue mechanics, contact and rigid body movements. FE studies of pathomechanics have provided estimates of internal soft tissue stresses, and suggest that such stresses may often be considerably larger than those measured at the plantar surface and are proportionally greater in the diabetic foot compared to controls. FE analysis allowed evaluation of insole performance and development of new insole designs, footwear and corrective surgery to effectively provide intervention strategies. The technique also presents the opportunity to simulate the effect of changes associated with the diabetic foot on non-mechanical factors such as blood supply to local tissues.While significant advancement in diabetic foot research has been made possible by the use of FE analysis, translational utility of this powerful tool for routine clinical care at the patient level requires adoption of cost-effective (both in terms of labour and computation) and reliable approaches with clear clinical validity for decision making

    An investigation to assess ankle mobility in healthy individuals from the application of multi-component compression bandages and compression hosiery

    Get PDF
    Background An investigation was undertaken to compare the effect of multi-component compression bandages and compression hosiery kits on individuals’ range of ankle motion whilst wearing typical and medical footwear, and barefoot. Methods A convenience sample of 30 healthy individuals recruited from the staff and student population at the University of Huddersfield, UK. Plantarflexion/dorsiflexion range of ankle motion (ROAM) was measured in participants over 6 steps in every combination of typical, medical and no footwear; and multi-component bandages, compression hosiery and no garments. Results Controlling for age, gender and garments, the use of typical footwear was associated with a mean increase in ROAM of 2.54° at best estimate compared with barefoot; the use of medical footwear was associated with a mean decrease in ROAM of 1.12° at best estimate compared with barefoot. Controlling for age, gender and footwear, the use of bandaging was associated with a mean decrease in ROAM of 2.51° at best estimate compared with no garments. Controlling for age, gender and footwear, the use of hosiery was not associated with a significant change in ROAM compared with no garments. Conclusions Bandages appear to restrict ROAM more than hosiery when used in conjunction with a variety of footwear types
    corecore